Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Clin Infect Dis ; 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-20236445

ABSTRACT

We administered SARS-CoV-2 VST under emergency IND to 6 immunocompromised patients with persistent COVID-19 and characterized clinical and virologic responses: three patients had partial responses after failing other therapies but then died. Two patients completely recovered, but the role of VST in recovery was unclear due to concomitant use of other antivirals. One patient had not responded to two courses of remdesivir and experienced sustained recovery after VST. The use VST in immunocompromised patient with persistent COVID-19 requires further study.

2.
Open Forum Infect Dis ; 10(4): ofad189, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2292576

ABSTRACT

Immunocompromised patients with B-cell deficiencies are at risk for prolonged symptomatic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. We describe 4 patients treated for B-cell malignancies with B-cell-depleting therapies who developed persistent SARS-CoV-2 infection and had resolution of symptoms following an extended course of nirmatrelvir/ritonavir.

3.
J Med Virol ; 95(2): e28550, 2023 Feb.
Article in English | MEDLINE | ID: covidwho-2219767

ABSTRACT

Prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has received much attention since it is associated with mortality and is hypothesized as the cause of long COVID-19 and the emergence of a new variant of concerns. However, a prediction model for the accurate prediction of prolonged infection is still lacking. A total of 2938 confirmed patients with COVID-19 diagnosed by positive reverse transcriptase-polymerase chain reaction tests were recruited retrospectively. This study cohort was divided into a training set (70% of study patients; n = 2058) and a validation set (30% of study patients; n = 880). Univariate and multivariate logistic regression analyses were utilized to identify predictors for prolonged infection. Model 1 included only preadmission variables, whereas Model 2 also included after-admission variables. Nomograms based on variables of Model 1 and Model 2 were built for clinical use. The efficiency of nomograms was evaluated by using the area under the curve, calibration curves, and concordance indexes (C-index). Independent predictors of prolonged infection included in Model 1 were: age ≥75 years, chronic kidney disease, chronic lung disease, partially or fully vaccinated, and booster. Additional independent predictors in Model 2 were: treated with nirmatrelvir/ritonavir more than 5 days after diagnosis and glucocorticoid. The inclusion of after-admission variables in the model slightly improved the discriminatory power (C-index in the training cohort: 0.721 for Model 1 and 0.737 for Model 2; in the validation cohort: 0.699 for Model 1 and 0.719 for Model 2). In our study, we developed and validated predictive models based on readily available variables of preadmission and after-admission for predicting prolonged SARS-CoV-2 infection of patients with COVID-19.


Subject(s)
COVID-19 , Humans , Aged , Nomograms , SARS-CoV-2 , Retrospective Studies , Post-Acute COVID-19 Syndrome
4.
Intern Med ; 61(14): 2215-2219, 2022.
Article in English | MEDLINE | ID: covidwho-1938534

ABSTRACT

A 52-year-old man with mantle cell lymphoma treated with bendamustine and rituximab developed prolonged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Despite elevated titers of anti-spike IgG antibody, protracted pancytopenia persisted for more than six months. Finally, the anti-SARS CoV-2 vaccine, BNT162b2, was administered, which improved his blood cell count and eliminated the virus. The increased anti-spike IgG titer and lymphocyte count after vaccination suggested that both humoral and cellular immunity acted in coordination to eliminate the virus.


Subject(s)
COVID-19 , Lymphoma , Viral Vaccines , Adult , Antibodies, Viral , BNT162 Vaccine , Humans , Male , Middle Aged , SARS-CoV-2 , Vaccination
5.
Virus Evol ; 8(1): veac042, 2022.
Article in English | MEDLINE | ID: covidwho-1915852

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) emerge for their capability to better adapt to the human host aimed and enhance human-to-human transmission. Mutations in spike largely contributed to adaptation. Viral persistence is a prerequisite for intra-host virus evolution, and this likely occurred in immunocompromised patients who allow intra-host long-term viral replication. The underlying mechanism leading to the emergence of variants during viral persistence in the immunocompromised host is still unknown. Here, we show the existence of an ensemble of minor mutants in the early biological samples obtained from an immunocompromised patient and their dynamic interplay with the master mutant during a persistent and productive long-term infection. In particular, after 222 days of active viral replication, the original master mutant, named MB610, was replaced by a minor quasispecies (MB61222) expressing two critical mutations in spike, namely Q493K and N501T. Isolation of the two viruses allowed us to show that MB61222 entry into target cells occurred mainly by the fusion at the plasma membrane (PM), whereas endocytosis characterized the entry mechanism used by MB610. Interestingly, coinfection of two human cell lines of different origin with the SARS-CoV-2 isolates highlighted the early and dramatic predominance of MB61222 over MB610 replication. This finding may be explained by a faster replicative activity of MB61222 as compared to MB610 as well as by the capability of MB61222 to induce peculiar viral RNA-sensing mechanisms leading to an increased production of interferons (IFNs) and, in particular, of IFN-induced transmembrane protein 1 (IFITM1) and IFITM2. Indeed, it has been recently shown that IFITM2 is able to restrict SARS-CoV-2 entry occurring by endocytosis. In this regard, MB61222 may escape the antiviral activity of IFITMs by using the PM fusion pathway for entry into the target cell, whereas MB610 cannot escape this host antiviral response during MB61222 coinfection, since it has endocytosis as the main pathway of entry. Altogether, our data support the evidence of quasispecies fighting for host dominance by taking benefit from the cell machinery to restrict the productive infection of competitors in the viral ensemble. This finding may explain, at least in part, the extraordinary rapid worldwide turnover of VOCs that use the PM fusion pathway to enter into target cells over the original pandemic strain.

6.
Int J Infect Dis ; 122: 444-448, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1895084

ABSTRACT

OBJECTIVES: Intra-host SARS-CoV-2 evolution during chronic infection in immunocompromised hosts has been suggested as being the possible trigger of the emergence of new variants. METHODS: Using a deep sequencing approach, we investigated the SARS-CoV-2 intra-host genetic evolution in a patient with HIV over a period of 109 days. RESULTS: Sequencing of nasopharyngeal swabs at three time points demonstrated dynamic changes in the viral population, with the emergence of 26 amino acid mutations and two deletions, 57% of them in the Spike protein. Such a combination of mutations has never been observed in other SARS-CoV-2 lineages detected so far. CONCLUSION: Our data confirm that persistent infection in certain immunocompromised individuals for a long time may favor the dangerous emergence of new SARS-CoV-2 variants with immune evasion properties.


Subject(s)
COVID-19 , SARS-CoV-2 , Evolution, Molecular , Humans , Immunocompromised Host , Mutation , SARS-CoV-2/genetics
7.
Front Cell Infect Microbiol ; 12: 809407, 2022.
Article in English | MEDLINE | ID: covidwho-1817934

ABSTRACT

Large-scale SARS-CoV-2 molecular testing coupled with whole genome sequencing in the diagnostic laboratories is instrumental for real-time genomic surveillance. The extensive genomic, laboratory, and clinical data provide a valuable resource for understanding cases of reinfection versus prolonged RNA shedding and protracted infections. In this study, data from a total of 22,292 clinical specimens, positive by SARS-CoV-2 molecular diagnosis at Johns Hopkins clinical virology laboratory between March 11th 2020 to September 23rd 2021, were used to identify patients with two or more positive results. A total of 3,650 samples collected from 1,529 patients who had between 2 and 20 positive results were identified in a time frame that extended up to 403 days from the first positive. Cycle threshold values (Ct) were available for 1,622 samples, the median of which was over 30 by 11 days after the first positive. Extended recovery of infectious virus on cell culture was notable for up to 70 days after the first positive in immunocompromised patients. Whole genome sequencing data generated as a part of our SARS-CoV-2 genomic surveillance was available for 1,027 samples from patients that had multiple positive tests. Positive samples collected more than 10 days after initial positive with high quality sequences (coverage >90% and mean depth >100), were more likely to be from unvaccinated, or immunosuppressed patients. Reinfections with viral variants of concern were found in 3 patients more than 130 days from prior infections with a different viral clade. In 75 patients that had 2 or more high quality sequences, the acquisition of more substitutions or deletions was associated with lack of vaccination and longer time between the recovered viruses. Our study highlights the value of integrating genomic, laboratory, and clinical data for understanding the biology of SARS-CoV-2 as well as for setting a precedent for future epidemics and pandemics.


Subject(s)
COVID-19 , Reinfection , COVID-19/diagnosis , Genome, Viral/genetics , Genomics , Humans , Molecular Diagnostic Techniques , RNA, Viral/genetics , SARS-CoV-2/genetics
8.
J Infect Dis ; 225(7): 1118-1123, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1702896

ABSTRACT

B-cell-depleting therapies may lead to prolonged disease and viral shedding in individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and this viral persistence raises concern for viral evolution. We report sequencing of early and late samples from a 335-day infection in an immunocompromised patient. The virus accumulated a unique deletion in the amino-terminal domain of the spike protein, and complete deletion of ORF7b and ORF8, the first report of its kind in an immunocompromised patient. Unique viral mutations found in this study highlight the importance of analyzing viral evolution in protracted SARS-CoV-2 infection, especially in immunosuppressed hosts.


Subject(s)
COVID-19 , SARS-CoV-2 , B-Lymphocytes , Humans , Immunocompromised Host , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Virus Shedding
9.
Tumori ; 108(6): NP1-NP4, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1582700

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, oncologists have managed patients at higher risk of having a severe course of this infection. This raises new questions about their correct management, as well as the difficulty of distinguishing tumor/treatments complications from those related to COVID-19. We report a case of an 11-year-old boy undergoing treatment for T-cell lymphoblastic lymphoma who experienced a prolonged COVID-19 course. Oncologic therapy was continued without significant changes compared to the initially planned treatment. No relevant complications occurred. COVID-19 convalescent plasma was administered, resulting in a positive antibody titer after 24 days.


Subject(s)
COVID-19 , Lymphoma, Non-Hodgkin , Male , Child , Humans , COVID-19/complications , SARS-CoV-2 , Pandemics , Lymphoma, Non-Hodgkin/complications , Lymphoma, Non-Hodgkin/diagnosis , Lymphoma, Non-Hodgkin/therapy , COVID-19 Serotherapy
10.
Virus Evol ; 7(2): veab078, 2021 Sep 29.
Article in English | MEDLINE | ID: covidwho-1467409

ABSTRACT

Long-term infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) represents a challenge to virus dispersion and the control of coronavirus disease 2019 (COVID-19) pandemic. The reason why some people have prolonged infection and how the virus persists for so long are still not fully understood. Recent studies suggested that the accumulation of intra-host single nucleotide variants (iSNVs) over the course of the infection might play an important role in persistence as well as emergence of mutations of concern. For this reason, we aimed to investigate the intra-host evolution of SARS-CoV-2 during prolonged infection. Thirty-three patients who remained reverse transcription polymerase chain reaction (RT-PCR) positive in the nasopharynx for on average 18 days from the symptoms onset were included in this study. Whole-genome sequences were obtained for each patient at two different time points. Phylogenetic, populational, and computational analyses of viral sequences were consistent with prolonged infection without evidence of coinfection in our cohort. We observed an elevated within-host genomic diversity at the second time point samples positively correlated with cycle threshold (Ct) values (lower viral load). Direct transmission was also confirmed in a small cluster of healthcare professionals that shared the same workplace by the presence of common iSNVs. A differential accumulation of missense variants between the time points was detected targeting crucial structural and non-structural proteins such as Spike and helicase. Interestingly, longitudinal acquisition of iSNVs in Spike protein coincided in many cases with SARS-CoV-2 reactive and predicted T cell epitopes. We observed a distinguishing pattern of mutations over the course of the infection mainly driven by increasing A→U and decreasing G→A signatures. G→A mutations may be associated with RNA-editing enzyme activities; therefore, the mutational profiles observed in our analysis were suggestive of innate immune mechanisms of the host cell defense. Therefore, we unveiled a dynamic and complex landscape of host and pathogen interaction during prolonged infection of SARS-CoV-2, suggesting that the host's innate immunity shapes the increase of intra-host diversity. Our findings may also shed light on possible mechanisms underlying the emergence and spread of new variants resistant to the host immune response as recently observed in COVID-19 pandemic.

11.
Int J Infect Dis ; 107: 247-250, 2021 Jun.
Article in English | MEDLINE | ID: covidwho-1300800

ABSTRACT

Prolonged B-cell depletion due to anti-CD20 monoclonal antibody (mAbs) therapy impairs the adaptive immune response, causing severe manifestations during COronaVIrus Disease-2019 (COVID-19). The cases of two patients under anti-CD20 therapy who experienced prolonged and severe COVID-19 successfully treated with mAbs against Severe Acute Respiratory Syndrome-CoV-2 spike proteins are reported.


Subject(s)
Antibodies, Monoclonal/therapeutic use , B-Lymphocytes/immunology , COVID-19/complications , Lymphocyte Depletion/adverse effects , SARS-CoV-2 , Antigens, CD20/immunology , Female , Humans , Male , Middle Aged , Severity of Illness Index , COVID-19 Drug Treatment
SELECTION OF CITATIONS
SEARCH DETAIL